Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled variations varying from 1.5 to 70 billion parameters to build, experiment, and properly scale your generative AI concepts on AWS.
In this post, we show how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled variations of the designs too.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language design (LLM) established by DeepSeek AI that utilizes support finding out to enhance thinking abilities through a multi-stage training process from a DeepSeek-V3. A crucial distinguishing feature is its support knowing (RL) step, which was used to refine the model's actions beyond the basic pre-training and tweak process. By integrating RL, DeepSeek-R1 can adjust more efficiently to user feedback and goals, ultimately improving both significance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, suggesting it's geared up to break down complex questions and reason through them in a detailed manner. This directed thinking procedure allows the design to produce more accurate, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT abilities, aiming to create structured reactions while concentrating on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has recorded the market's attention as a versatile text-generation model that can be integrated into various workflows such as agents, logical reasoning and data analysis tasks.
DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion specifications, enabling effective reasoning by routing questions to the most pertinent professional "clusters." This method enables the model to specialize in various issue domains while maintaining total efficiency. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.
DeepSeek-R1 distilled models bring the thinking abilities of the main R1 design to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a process of training smaller sized, more effective models to simulate the behavior and thinking patterns of the bigger DeepSeek-R1 model, utilizing it as an instructor design.
You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this model with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, prevent damaging content, and examine designs against crucial safety requirements. At the time of composing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce multiple guardrails tailored to different usage cases and use them to the DeepSeek-R1 design, improving user experiences and standardizing security controls across your generative AI applications.
Prerequisites
To release the DeepSeek-R1 design, you require access to an ml.p5e circumstances. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are deploying. To ask for a limit boost, produce a limitation increase demand and connect to your account team.
Because you will be releasing this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) permissions to use Amazon Bedrock Guardrails. For instructions, see Establish approvals to use guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails enables you to introduce safeguards, prevent harmful material, and examine models against key safety criteria. You can carry out precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to assess user inputs and model actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo.
The basic flow involves the following steps: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After getting the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the final outcome. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it took place at the input or output phase. The examples showcased in the following sections demonstrate inference utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:
1. On the Amazon Bedrock console, select Model brochure under Foundation models in the navigation pane.
At the time of writing this post, you can use the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and choose the DeepSeek-R1 design.
The model detail page supplies essential details about the design's capabilities, rates structure, and execution standards. You can discover detailed use guidelines, consisting of sample API calls and code bits for integration. The model supports various text generation jobs, including content creation, code generation, and concern answering, using its reinforcement discovering optimization and CoT reasoning capabilities.
The page likewise consists of deployment options and licensing details to assist you get started with DeepSeek-R1 in your applications.
3. To begin using DeepSeek-R1, choose Deploy.
You will be triggered to configure the implementation details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters).
5. For Number of instances, enter a number of instances (in between 1-100).
6. For example type, pick your instance type. For optimal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is advised.
Optionally, you can configure advanced security and facilities settings, including virtual personal cloud (VPC) networking, service role approvals, and file encryption settings. For a lot of utilize cases, the default settings will work well. However, for production implementations, you may want to review these settings to align with your company's security and pipewiki.org compliance requirements.
7. Choose Deploy to start using the model.
When the release is complete, you can test DeepSeek-R1's abilities straight in the Amazon Bedrock playground.
8. Choose Open in play ground to access an interactive user interface where you can try out various triggers and change design specifications like temperature level and maximum length.
When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimum results. For example, material for reasoning.
This is an excellent method to explore the model's reasoning and text generation abilities before integrating it into your applications. The playground provides instant feedback, helping you comprehend how the model responds to different inputs and letting you tweak your prompts for optimal outcomes.
You can rapidly check the model in the playground through the UI. However, to invoke the released model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.
Run inference using guardrails with the deployed DeepSeek-R1 endpoint
The following code example demonstrates how to perform inference utilizing a released DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have produced the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime customer, sets up reasoning specifications, [forum.batman.gainedge.org](https://forum.batman.gainedge.org/index.php?action=profile
1
DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Aileen Ritchey edited this page 4 months ago